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AbslracL We show numerically that Scott's suggestion to use revised parameter values 
in order to simulate interchain coupling effects on Davydov soliton dynamics with one- 
chain simulations is correct also for excitations within the IDz) m a Q  state, for which 
his analytical derivation does not hold. However, in the case of the IDI) state we find 
that the equations of motion for the symmetric mode reduce exactly to the equations 
for one chain without any renormalization of parameters. Further, we present numerical 
simulations for three coupled chains including temperature within different onrna 6tats 
and for one chain using Scott's revised parameters. We found that Dayrdov solitons 
should exist in threechain systems at physiological temperature for reasonable parameter 
values. 

I. Introduction 

For the mechanism of energy transport through proteins Davydov [1,2] suggested that 
the energy of zx 0.4 eV released by hydrolysis of adenosine triphosphate (ATP) could 
be transported in quanta of the amide-I (mainly C=O stretch) vibration (z 0.2 eV). 
The CO groups participate in hydrogen bonds, which form chains parallel to the 
axis of a-helical proteins. Thus the amide-I vibration interacrs with the acoustic 
phonons in these chains. The excitation of an amide-I oscillator causes a distortion 
in the lattice, which in turn stabilizes the amide-I excitation [1,2]. It was found that 
for certain regions of the parameter space of the model this effect can prevent the 
excitation from dispersion via the dipole4pole coupling between neighbouring CO 
groups in the lattice. The region in which the vibrational energy is localized can 
travel as a soliton along the chain. In his original theory Davydov 111 used an amad 
for the wavefunction (ID2)) that treats the lattice classically. At zero temperature it 
has been confirmed that Davydov solitons exist for parameter values appropriate for 
proteins [3]. Also their stability against disorder along the chain was studied [4]. The 
investigation of temperature led to controversial results [S-141. 

Brown et a1 [15] have shown that the ID2) state umad does not reproduce 
the dynamics of the exactly solvable small-polaron limit (dipole-dipole coupling 
neglected). Davydov [2] introduced a more sophisticated umud state (IQ), see also 
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[XI), which allows for quantum effects in the lattice. However, he used the energy 
expectation value for IDl) as classical Hamiltonian function to derive equations of 
motion [2]. It was shown that with these equations 10,) does not reproduce the 
small-polaron limit [U] either. Mechtly and Shaw [17] and Skriinjar ef ul [IS] could 
derive new equations of motions for IDl) with the help of quantum-mechanical 
methods. These equations of motion reproduce the small-polaron limit. However, in 
the general case also this umufz state is still approximate. In (171 as well as in our 
work [I91 it is shown that at T = 0 K the window for travelling solitons in the IDl) 
state occurs in regions of the parameter space that cannot be applied to proteins 
(soliton formation threshold X > 150 pN). 

In the first paper of this series [20] we also used the Langrangian method described 
in [18] to obtain correct equations of motion for the ID,) umun state from the 
thermally averaged Hamiltonian derived in [2,16]. In this investigation [20,21], as 
well as in our previous studies within the IDt) state, summarized in [21], we found 
that Davydov solitons should be stable at 300 Kif the spring constant of the hydrogen 
bonds is larger than previously assumed. There are doubts if the Davydov concept 
of using a thermally averaged Hamiltonian to derive equations of motion from it is 
in agreement with statistical mechanics. There is the possibility that it may lead to 
results that are even qualitatively misleading. Therefore we performed comparisons of 
our results obtained with the averaged Hamiltonian method with the exact quantum 
Monte Carlo results of Wang et ul [22]. We found (see the second paper of this series 
[23]) that, in contrast to other models for temperature effects, Davydov's umun 
reproduces the results given in [22] at least qualitatively. Therefore we use this unsalz 
also in this work in order to investigate temperature and interchain coupling effects. 
Since all our results indicate that the hydrogen-bond spring constant should be large 
to allow soliton formation at 300 K, we go back to the suggestion of Scott [3,24,25] 
that in one-chain simulations the spring constant should be larger by a factor of 3, 
in order to simulate the three coupled chains present in real protein @-helices within 
a one-chain model. Scott reached this conclusion from analytical considerations on 
a symmetric excitation mode and from dynamical simulations on three chains [3]. 
For an excellent review of the state of the art of work on Davydov solitons, the 
reader should consult Scott's recent paper (251. In the second section of this work we 
briefly describe Davydov's two unsufz states for one chain, and in the third part we 
present one-chain simulations using the ID,) stare with revised parameters aowrding 
to Scott's suggestion. In the fourth part we present simulations on three chains using 
different excitations (symmetric as well as asymmetric ones) within the IDa) umufz 
state and compare them with one-chain results, using different parameter values. We 
could confirm Scott's conclusion about parameter values also for excitations he did 
not consider, and for which his analytical considerations do not hold. However, within 
the 10,) model we found that for the symmetric A mode the equations of motion for 
one spine and for three coupled chains are identical. Finally in the fifth part some 
examples of threechain simulations including temperature are discussed, and in the 
sixth part the results obtained are summarized. 

2. Ansoh states 

2.1. The ID,) unsufz 

In this section we describe briefly the unsufz states of Davydov for the case of one 
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chain and the models we used to introduce temperature effects. The Hamiltonian is 
in the case of one chain [l] given by 

+ &af;~,(Gn,, - $,)I. (1) 

The meaning of the operators in equation (1) as well as the explanation and values 
of the parameters are given in paper I1 of this series [U] (see also figure 1). 

n -'I n n +1 

Figure 1. Schematic picture of a hydrogen-bonded channel in a protein 
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Figure Z Survey of the (X, W) parameter space a1 T = 300 K using Davdov's 
temperature model and the 101) m o n  slate for one chain together with a m a s  of 
3M = 342mp (initial excitation at site 49, time slep 0.15 fs, chains of 50 units). Cmssed 
open circles: pinned soliton. Horizontally dashed black circle: pinning or reflection 
after roughly 40 sites. Vertically dashed black circles: slowly dispersive solimy wave. 
HorizontallyWerticaIly m e d  black circles: soliton that becomes pinned after a few sites. 
Diagonally crossed black circles: moving solilon that becomes pinned after interanion 
with the shock wave and then slowly dispzrses. Uncrossed black circlr travelling soliton. 

For the approximate solution of the time-dependent Schrodinger equation 
Davydov [I] introduced the displaced oscillator state ansatz called IDz). Davydov 
[1,2] formed the expectation value of the Hamiltonian (1) with ID,) and used this 
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expectation value as classical Hamiltonian function. In this way he obtained the 
equations of motion. Kerr and Lomdahl [7] have shown that these equations can be 
obtained also by purely quantum-mechanical methods and also for states of more than 
one quantum [SI. The ID2) state reproduces the lattice dynamics for J = 0 correctly, 
but leads to an incorrect phonon energy [15]. For the inclusion of temperature, we 
first solve the decoupled lattice problem (X = 0) [13,14], which is simply a chain of 
coupled harmonic oscillators. As initial excitations we distribute an energy of Nk,T 
(k, is Boltzmann's constant) on the normal modes using Bose-Einstein statistics. 
Half of this energy was distributed as potential, the other half as kinetic energy. Thus 
the lattice displacements and momenta at a given time to after equilibration can 
be obtained analytically and incorporated into the equations of motion via a phase 
transformation (see 1211 for details). The time t ,  can be chosen arbitrarily. The 
results of soliton dynamics do not depend on the choice of tu as we have shown in 
[41. 

22. The IDl) ansae stale 

In this section we show briefly the equations for the IDl) umae state in the case 
of one chain [20,21]. The Hamiltonian [1,9 in second quantized form including 
disorder is given by 

k = C[(E" + E,)ir,+B, - J,(a,++,s, + a,+a,+,)1 
n 

Here a:(&,) are creation (annihilation) operators for acoustic phonons of 
wavenumber k. The translational mode has to be excluded from the summation. 
Note that we use again the asymmetric interaction model where only the coupling of 
the oscillator n to the hydrogen bond between n and n + 1 in which the oscillator 
takes part is considered. In (2) wk denotes the eigenfrequency of the norma1 mode 
k and U contains the normal mode coefficients; w and U are obtained by numerical 
diagonalization of the matrix V with elements 

K m  = {Iwn(l- 6 m ~ )  + wn-1(1- bn1)16wn - J+'a(1- bnN)6n,n+l 

- Wn-IU - ~ , l ) ~ ~ , n - l } ( ~ n M ~ ) - " 2 .  (3) 

The form of V implies that we use free chain ends and N units Other boundaly 
conditions l i e  cyclic 1161 or tixed chain ends 1171 would require another form of V. 

The ID,) amalz for inclusion of temperature in Davydov's approximation for 
solution of the time-dependent SchrCrdinger equation is 
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Here 10). is the exciton vacuum, and I&, Y) is a coherent phonon state. For the 
one-quantum oscillator states used here E,, la; 1' = 1 holds. To include temperature 
approximately we assume, as in 1161, that a phonon distribution 

is present in the lattice where each normal mode is occupied by vk quanta. Here 
IO), is the phonon vacuum. We do not consider a thermal distribution of amide-I 
quanta since at 300 K the Bottzmann factor implies that only 3 of loo00 amide4 
oscillators would be thermally excited. Thus one can neglect a possible thermalized 
soliton distribution in the system too, since the presence of solitons requires first of 
all amide-I excitation. Then 

where the b R k ( t )  are the coherent state amplitudes. Following the derivation of 
Cruzeiro ef a1 [16] (done for cyclic ordered chains) we obtain the thermally averaged 
Hamiltonian 

HT = ( ( E O +  K ) l a L I Z -  Jnata',+lDn,n+~- J n - l C a L l D n , m - ~  
R 

with 
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%,k = h ( B , k  + 4 , k )  - Jn(bntl,k - b n k )  

[ ( v k  + l )Dn,nt l (%tl /an)  + UkDntl,n(a',tl/a',)l 

- J n - l ( b n - l , k  - b n k ) [ ( v k  + l )Dn,n-l(an-l /un)  

+ vk Dn-l,n(aL-l/a: 11. 

Tb avoid numerical difficulties due to the denominators a, and a:, we used as initial 
condition (N  = 50): 

Qn(0)  = A[6,,,, + % ( I -  (11) 

where A is the normalization constant, f n  = 0.005 as in [17] and no = 49. One 
has to emphasize here that, owing to the translational invariance of the Hamiltonian 
for infinite or cyclic chains without disorder, all stationary states have also to be 
translationally invariant. However, because of the localized initial excitation we have 
to deal with the time evolution of non-stationary states that ideally (the IDl) ansalz 
is an approximation) solve the time-dependent Schrainger equation, although they 
are not eigenstates of the Hamiltonian. Owing to the localized initial excitation, 
also an exact solution for the time evolution of this initial state would not be 
translationally invariant, although in principle this exact solution could be expanded 
in the space of the (unknown) stationaly and translationally invariant eigenstates 
of the Hamiltonian. The method introduced by Davydov to describe temperature 
effects, which we also apply in this work, was criticized by several authors as being 
inconsistent with statistical mechanics, since equations of motion are obtained from 
a thermally averaged Hamiltoniaa However, as we have found previously [231, the 
results obtained with this model agree qualitatively with exact quantum Monte Carlo 
results from [ZZ]. 

3. Oneshain dynamics at T = 300 K with enlarged mass 

In this section we want tn follow Scott's suggestion to use revised parameters in 
one-chain dynamics in order to simulate three-chain dynamics with them. Since we 
want to survey the (X, W) parameter space, we only need to change the site mass 
from 114m, to 342mp (mp = proton mass). However, we have to keep in mind 
that then in these simulations W is an effective spring constant and no longer the 
spring constant of an individual hydrogen bond. We used chains of 50 units and an 
initial excitation at one site (49) as in the calculations reported previously [20]. The 
temperature was 300 K using Davydov's model for temperature effects and the ID,) 
m u l z  state. The time step was 0.15 fs and we followed the dynamics over roughly 
26 ps using a fourth-order Runge-Kutta method for the numerical solution of the 
equations of motion. In the case of the IDI) state Scott's analytical considerations 
for a symmetric A-mode excitation within the IDt) state, which are repeated in brief 
in the next section, do not hold. Thus we should not expect that also for the ID,) 
UMUIZ the threechain case is reproduced by onechain dynamics if we use precisely 
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3W and 3M instead of W and M .  However, because a survey of the parameter 
space requires a large number of simulations, it would be preferable if one could 
work with the one-chain model, since it needs less computation time and thus longer 
chains can be used (50 units). 

The results of our calculations are displayed in figure 2. Since the enlarged mass 
influences considerably the phonon frequencies, we have to expect that interactions 
between the soliton and sound waves in the lattice might be different from the one- 
chain case with small site mass. Indeed, this is the case, as the figure shows. We 
find many parameter values where the solitons become pinned after interaction with 
the sound wave reflected from the chain end. After that interaction, in most cases 
the solitons disperse slowly and perform a random walk around the pinning site. For 
W = 80 N m-l  and X = 60 pN the soliton is even reflected from the shock wave, 
but not destroyed. Therefore we marked this point in the parameter space as a point 
where travelling solitons exist. In general we see that the picture is very similar to that 
for the reduced value of the mass 1201. The region of stable solitons is again shifted 
to small X and rather large W values, and the boundary of this region appears to 
be roughly hear. However, here W has another meaning than in previous work 
on one chain. Thus the threshold for soliton formation of W U 40 N m-l should 
correspond to a spring constant for single hydrogen bonds of roughly 13 N m-I, 
which is the usually cited value, while the also used value of 19 N m-' corresponds 
here to W ci 60 N m-l. However, the factor of 3 holds only for ID2) theory, while 
for IDl) this is not the case. Further the figure shows that for a value X = 60 pN 
W has to be larger than 70 N m-' to allow travelling solitons, which corresponds 
to a hydrogen-bond spring constant of 2 25 N m-l,  which is larger than the usually 
used value taken from crystalline formamide. Since we know that Davydov's model 
for temperature effects, although criticized, reproduces exact quantum Monte Carlo 
(QMC) results qualitatively [23], we can expect from these results that Davydovsolitons 
should be possible in protein helices at T = 300 K, again as in the ID2) case, if W 
is in the region around 30 N m-I. However, since we do not know to which value of 
the hydrogen spring constant a given value of W corresponds in our case, we have 
to find out how the exact ID,) equations for three chains simplify in the case of the 
A mode and we also have to perform explicit three-chain simulations, which we can 
compare with onechain dynamics for different values of W .  This will be discussed 
in the next section. 

But let us turn first to some explicit dynamic results. For this purpose we show in 
figure 3 the time evolution of the probability la,,(t)I2 to find an amide-I excitation 
at site n and the squared lattice displacement D , ( t )  = [q ,+ l ( t )  - q,,(t)I2 for four 
of the cases summarized in figure 3. In figure 3(u) the case W = 40 N m-l and 
X = 20 pN is shown, where an interesting phenomenon occurs: after interaction 
between the soliton and the sound wave in the lattice the major part of the excitation 
is reflected from the interaction site and travels backwards in the form of a soliton. 
However, from that part of the excitation which remains at the interaction site a 
second soliton is formed, which also travels backwards but with reduced velocity. In 
figure 3(b) we show the dynamics for W = 40 N m-' again and for X = 40 pN. We 
see that in this case a soliton travels through the chain, broadens after interaction 
with the sound wave, and close to the end of the simulation time two solitons are 
formed which travel into opposite directions. In the case of W = 60 N m-l and 
X = 20 pN (figure 3(c)) we observe a soliton that survives interaction with the shock 
wave, as well as reflection at the chain end. For X = 40 pN and the same W 

- 
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(figure 3(4)  the soliton also travels through the chain, but during interaction with 
the sound wave its amplitude becomes smaller. 

I,. 

Y 

Figure 3. Time evolution of la,(t)1* and of the squared lattice displacements 
Dn( t )  = [qn+l(t) - q.( t ) ] *  for four of the parameter sets shown in figure 2: (a) 
U' = 40 N m-l, X = M pN; (b) W = 40 N m-l, X = 40 p N  (c) W = 60 N m-l, 
X = M p N  (d)  W = 60 N m-l, X = 40 pN. 

4. Threechain simulations at T = 0 K 

As Scott pointed out (see 1251 for a recent review) a long time ago [3], in an a-helix 
three parallel chains of hydrogen bonds exist, which are coupled by dipole4ipole 
interactions. If a is an index that specifies the chain (a = 1, 2 or 3), and if L is the 
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coupling parameter between two neighbouring C=O oscillators on different chains, 
the equations of motion for tbe simple ID2) unsulz state are 13,241: 

= -J(an+l,or + a n - ~ , a )  + L(an++l+ an ,e -~ )  + X(qn+l,a - 4na)ana 
(12) 

(13) MGno = w q n t , , ,  -2%- + %-I, , )  + X(lfl,,12 - lan-1,,IZ). 

Scott's argument is now that the usually used values for the parameters W and M 
apply only for the case of three coupled chains. He found 131 for the interchain 
coupling parameter a value of L = 1.54 me\! For this value of L and standard 
values for the other parameters (W = 13 N m-', M = 114n,, X = 62 pN and 
J = 0.967 mev) we performed simulations for a three-chain system, as Scott did for 
special cases of excitation [3]. We used the symmetric A mode (a,, = an2 = un3), 
the linear combination of the two degenerate E modes (anl = 0, an2 = l/d, 
an3 - - - 1 / d )  and an asymmetric local excitation (L) of one unit on a single chain. 
The results are shown in figure 4. We see that in the case of the A mode the soliton 
consists of three identical, parallel-moving localized excitations on all three chains, 
while in the E mode the soliton moves only on two chains. In the case of the local 
excitation the soliton is found mainly on one chain, with a small fraction of the 
excitation transferred to the others. However, we did not obselve the phenomenon 
reported by Scott [3] that solitons on one chain jump to another after some time. 
Maybe the build-up of a small fraction of the excitation on the other chains in the 
case of the asymmetric initial condition might lead to a transfer of the whole soliton 
after longer times. In figure 5 we show only one of the chains for each of these 
simulations. One recognizes immediately that, despite the different initial excitations, 
the properties of the solitons are very similar in all three cases. Especially, the time 
that the solitons need to pass once through the chain is in all cases cz 40 ps. 

Figure 4. Time evolulion of la,(t)l* in lhe case 
of three inleracling chains in lhe I&) model for 
lhree different kinds of initial excitations (A, E, L: 
see text): S a l  chain, n = 1-104 second cham, 
n = 101-UXI; third chain, n = 201-300. 

Scott [3,24] argues for the A mode as follows. The norm is given by 
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Figure 5. Same as figure 4, but only one chain 
s h m  for each simulation: A mcde (top). E mcde 
(middle) and L excitation (bottom). 

Figure 6. Time evolution o€ Ian(t)lZ for isolated 
chains with W = 13 N n r l ,  M = 114mp (upper 
pan) and W = 39 N m-l, M = 342m, (rower 
P a 4  ( P Z )  man). 

If we introduce for the Amode an = (&)a,, and qn = qne then from the above 
equation 

lQ"lZ  = 1 
n 

holds and we obtain 

The term 

was included in the phase transformation on the a, to obtain these equations of 
motion. These are identical to the equations for one chain but with M' = 3M and 
W' = 3W. In figure 6 we show simulations of single chains with two combinations 
of parameters. Obviously one really has to work with 3M and 3W in order to 
reproduce the results of three-chain simulations with a one-chain calculation. The 
important point is that this conclusion holds not only for the symmetric A modes, for 
which Scott's considerations outlined above are valid, but also for the E mode and 
even for a single-chain excitation. 
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In the more complicated IDl) case the equations of motion for the symmetric A 
mode are 

ihk, = a ,  x { - i f i ( b , , k b : k  - kkb, ,k)  + bJk[2Bnk Re(b,k) -k lb,k12]) 
k 

- J ( D n , n + ~ a n + ~  + Dn,n-Ian-1) + 2Lan. (19) 

As in Scott’s derivation for the ID2) case we dropped the index Q for the helix 
number, because we can set anQ = a,,/&. Since further Dn,ar,n,arfl = 1 (because 
Bnka = 6,k,+l), the coupling term between neighbouring spines also simplifies and 
can be taken mto the phase transformation on the a,,. Because all coherent state 
amplitudes for the same site and normal mode on different spines are equal, we have 
for D,, again: 

In the equations for the coherent state amplitudes the factors at the a,, cancel because 
the a ,  appear only in form of a n f , / a , .  Further the complicated interchain coupling 
term vanishes in these equations, because it contains factors (bn,k,ar*l - bnkQ) = 0 

The values of wk and the matrix B are identical for the three lattice systems. Note 
that the equations shown above are valid only for the symmetric A mode. We see 
that the equations are completely identical with the equations for one chain, since 
also here the interchain coupling gives only a phase in the a,, and does not appear 
explicitly in the calculations. Thus for the A mode no additional computational effort 
is necessary. The more complicated equations of motion for general excitations are 
given in section 5. In figure 7 we show the results of three-chain simulations with 
an A-mode excitation but using the general equations of motion for three chains 
given in the next section. Further we show again the two single-chain simulations, 
but now computed in the 10,) model (X = 62 pN, figure 7(a)) .  In addition we 
have also used the large value of X = 180 pN (figure 7(6)) because, as previous 
results [17,19] have shown, in the IDl) model at T = 0 K solitons appear only for 
very large values of the exciton-phonon coupling constant. We see from figure 7(a)  
that the one-chain results for parameters M and W are the same as those from the 
explicit threechain calculations as expected from the considerations outlined above. 
For X = 180 pN (figure 7(6))  we observe a travelling solitary wave in the three-chain 
simulation as expected from the onechain results. However, an A-mode excitation 
does not necessarily occur in reality and thus we also have to study initial excitations 
in the E mode and ones that are localized on one chain where the equations for one 
chain are not the same as those for three interacting chains. This is discussed in the 
next section. 
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n 

F@m 7. l ime  w l u t i o n  of /un( t ) lz  (ID,) ma& stale) for fhree interacting chains 
with an A-mode excitation (only one chain shown: upper part) and for isolated chains 
with W = 13 N m-', M = 114mp (middle) and W = 39 N m-', M = H2mP (lower 
part), for (0) X = 62 pN and (b) X = 180 pN. 

5. T h w c h a i n  dynamics at T = 300 K 

Here we want to show first the necessary equations for three-chain dynamics with 
general initial excitations in the ID,) case using Davydov's model for temperature 
effects. The umutz state is the usual one, where n runs over the N sites of a spine, a 
over the three spines and k over the ( N  - 1) normal modes of the decoupled spines 
(the translational mode has to be excluded from the summation): 

The overlaps between the coherent states are now 
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Note that in our notation 01 has to be taken modulo 3 since for the interaction 
between the three spines we have cyclic boundary conditions (not for the interactions 
within one spine). The thermally averaged Hamiltonian is now 

Let us first discuss a localized excitation at one of the terminal sites of ,-st one 
spine. We have chosen a chain length of 20 units for each chain (excitation at site 
19 of chain 1) and the usual value of 1.5373 meV for the interchain coupling L [SI. 
The time step was chosen as 0.25 fs. In this case in a typical calculation on localized 
initial excitations the total energy was conserved within roughly 2 peV and the norm 
to better than 5 ppb (parts per billion). Repetition of one of the calculations with a 
time step of 0.1 fs led to no changes in the results. 
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In figure 8 we show the results of these simulations. We use for W the values 
13 N m-l from measurements on formamide crystals and 19 N m-l from theoretical 
calculations. Far X we use 35 N m-l, which was found by Scott, and also the usually 
applied value of 62 pN (see [25] for references). Figures 8(u) and (b) show that for 
W = 13 N m-l in the case of the lower X value a solitary wave is formed first, which 
becomes trapped roughly in the middle of the chain, while for the larger X value the 
excitation is trapped close to the chain end. In both cases a considerable part of the 
excitation goes over to the initially unexcited chains. In the case of I.Y = 19 N m-l 
(figures 8(c) and (d)) at the lower X value a clear solitary wave is formed and travels 
through the chain. If one looks more closely at the pulse-lie structure, one sees 
that the excitation is oscillating between the initially excited chain and the other two. 
When the excitation probability is small on chain 1, it is large on chains 2 and 3 and 
vice versa. At the larger X value the excitation is again trapped close to the initial 
excitation site. For X = 62 pN we have increased W to 30, 40, 50 and 60 N m-l. 
'Rvo cases are shown in figures S(e) (40 N m-l) and (f) (60 N m-'). As in the 
case of one-chain simulations an increase in W favours soliton formation and we 
found solitons occurring between W = 40 and 60 N m-l, even quantitatively in fair 
agreement with onechain and even with ID2) results. 

Y 

Y 

Figure 8. Time evolution of Icn(f)v in the I&} onmu state at MO K using Davydov's 
model for temperature effects and a localized initial excitation (a19,1(0) = 1, all other 
a equal to 0.005, then normalized to 1). Ail three chains are shown: chain 1, n = 1-20, 
chain 2. n = 2 1 4 ,  chain 3, n = 41-60. Time step, 0.25 Is. For different values of 
W and X: (U)  W = 13 N m-', X = 35 pN; (b) W = 13 N n-l, X = 62 pN; (c) 
W = 19 N m-', X = 35 pN; (d) W = 19 N m-l, X = 62 pN; (e) W = 40 N m-I, 
X = 62 p N  V, W = K O  N m-l, X = 62 pN. 

As figure 9 shows, the results for the E mode are more or less similar. However, 
here the solitary waves formed usually do not survive the reflection at the chain end. 
But we know from the one-chain results that this should be a pure end effect and 
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that the solitary waves should be able to pass also through considerably longer chains 
[20]. What we observe further is that a considerable part of the excitation remains 
localized at the initial excitation site. Figures 9(e) and cf) for larger W values 
again indicate that from W = 40 N m-l solitary wave formation can be expected. 
In figure 10 we show the results for the symmetric A mode. Here we show only 
one of the three chains, because the results for the other hvo are identical. It is 
obvious that a strong tendency to trapping after a few sites shows up. However, for 
W = 19 N m-I and X = 35 pN again a solitary wave is formed. In the cases of larger 
W values we observe again solitary wave formation, but at 40 N m-l (figure lO(e)) 
after the reflection the soliton oscillates around the chain end. At W = 50 N m-l 
(figure lO(f)) the soliton survives the reflection but a part of the excitation becomes 
trapped. Increasing W to 60 N m-I (not shown here) leads again to a solitary wave, 
but it moves erratically after reflection. Thus we reach the same basic conclusion 
as in the case of most other models (with the exception of the partial dressing state 
[26]) that we studied [U]: if W is larger than 30-40 N m-l solitary wave formation 
should be possible in proteins also at physiological temperature. 

Figure 9. Same as figure 8 but for an E-mode initial excitation at sites 19 of two of 
the chains ( ~ 1 9 , ~ ( 0 )  = -a19,2(0) = 1 f& all other a equal to 0.005, then normalized 
to 1). For: (0) W = 13 N m-', X = 35 pN; (b) W = 13 N m-l, X = 62 pN (c) 
W = 19 N m-l, X = 35 p N  (d )  W = 19 N m-l, X = 62 p N  (e) W = 30 N m-l, 
X = 62 p N  (f) W =40 N m-l, X = h 2  pN. 

6. Cooclusions 

For the ID,) ansad state we performed soliton dynamics in a system of three coupled 
chains as suggested and done earlier by Scott el a1 131. We could verify Scott's proposal 
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Fignm 10. Same as figure 8, but for an initial symmetric A-mcde excilalion (atq,l(O) = 
a l ~ , ~ ( 0 )  = a ~ ~ ( 0 )  = I/*, all other (1 equal to 0.005, then normalied to 1). Here 
only one of the chains is shown, because the results for all chains are identical. For: (0) 

W = 13 N m-l, X = 35 p N  (b W - 13 N m-l, X = 62 pN; (c) W = 19 N m-l, 
X = 35 pN; (d) W = I9 N m-?, X 62 pN; (e) W = 40 N m-l, X = 62 pN; 03 
W = 50 N m-l, X = 62 pN. 

that threechain dynamics can be simulated with onechain calculations if one takes 
as site mass three times the value applied in the threechain dynamics and for the 
spring constant of the hydrogen bonds also three times the value for one bond. This 
result is independent of the initial excitation, which can correspond to the symmetric 
A mode or to the degenerate E mode of the threechain system. Even for a l oca l id  
excitation on one chain we obtained agreement between three-chain dynamics and 
those using one chain but changed parameters. 

For the IDl) state we surveyed again the (X, W) parameter space at 300 K using 
one chain and 3M as site mass within Davydov’s method. We found that W has to be 
larger than roughly 70 N m-l to allow soliton formation around X = 60 pN. Since, 
according to Scott’s reasoning based on the IDz) umalz, this value would correspond 
to a spring constant of about 25 N m-’, we amve more or less at the same conclusion 
as discussed above for one chain with a smaller mass, if the suggestion that three- 
chain dynamics could be reproduced by one-chain simulations with a site mass of 
3M is correct also in the IDl) case. However, at 0 K we found that in the IDl) 
case three-chain dynamics with parameters M ,  W and X are identical to one-chain 
simulations with the same parameters in contrast to ID2) dynamics. 

With explicit three-chain simulations at T = 300 K using Davydov’s temperature 
model we found again that solitary waves are formed at W values larger than 
30-40 N m-l. However, if X is around 35 pN instead of 62 pN already from 
W around 19 N m-l solitary waves were observed. Thus the conclusion drawn 
earlier by us remains unchanged: if the spring constant of the hydrogen bonds in 
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protein a-helices is larger than 30-40 N m-I the Davydov soliton should be able 
to function at 300 K. Interestingly this conclusion is reached with both of Davydov’s 
am& states and with different models for temperature effects. Since the usually 
quoted value of 13 N m-’ derives from formamide crystals where the hydrogen- 
bonded molecules vibrate freely, it should be too small for proteins. In proteins the 
hydrogen-bonded sites are embedded in the covalent backbone of the helix, which 
becomes distorted due to the vibration. Thus we expect the spring constant of a 
protein normal mode corresponding to hydrogen-bond stretch to be much larger than 
that of ctystalline formamide, and thus probably allowing for Davydov solitons to be 
formed in proteins. However, calculations or measuremenls on the spring constant in 
proteins are necessary to decide finally on the question of the existence of Davydov 
solitons. 
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